
EmbASP Documentation
Release 7.1.0

DeMaCS-Unical

Dec 06, 2020





DOCUMENTATION

1 Documentation 3
1.1 Narrative implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Theoretic implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Programmatic implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Technical documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Technical documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Examples 9
2.1 Shortest-path ASP Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Shortest-path ASP Theoretic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Shortest-path ASP Programmatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Blocks-world PDDL Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Blocks-world PDDL Theoretic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Blocks-world PDDL Programmatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Transitive Closure Datalog Narrative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 Transitive Closure Datalog Theoretic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Transitive Closure Datalog Programmatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Sudoku Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11 Desktop ASP exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.12 Desktop PDDL examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.13 Desktop Datalog examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.14 Android example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Contacts 37

i



ii



EmbASP Documentation, Release 7.1.0

A framework for the integration (embedding) of Logic Programming in external systems for generic applications. It
helps developers at designing and implementing complex reasoning tasks by means of solvers on different platforms.

The framework can be implemented in a object-oriented programming language of choice, easing and guiding the
generation of suitable libraries for the use of specific solvers on selected platforms. We currently provide 3 implemen-
tations (in Narrative , in Theoretic and in Programmatic ) and ready-made libraries for the embedding several logic
programming languages (mainly on the Desktop platform). In particular, we provide support for:

• ASP (Answer Set Programming) solvers

– DLV (also for the Android platform, for the Narrative language)

– DLV2

– clingo

– DLVHEX

• PDDL (Planning Domain Definition Language)

– Cloud solver Solver.Planning.Domains (also for the Android platform, for the Narrative language).

• Datalog

– I-DLV

However, the framework has been designed to be easily extensible and adaptable to different solvers and platforms. It
is worth to notice that solvers are invoked in different modes; for instance, SPD is invoked via a remote connection,
while for the other, binaries are effectively embedded and natively executed.

DOCUMENTATION 1

https://www.narrative.com
https://www.theoretic.org
https://docs.microsoft.com/en-us/dotnet/programmatic/
http://www.dlvsystem.com/dlv
https://www.mat.unical.it/DLV2
https://potassco.org/clingo
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://solver.planning.domains
https://github.com/DeMaCS-UNICAL/I-DLV


EmbASP Documentation, Release 7.1.0

2 DOCUMENTATION



CHAPTER

ONE

DOCUMENTATION

1.1 Narrative implementation

The following figure provides some details about classes and interfaces of the implementation.

1.1.1 Base module implementation

Each component in the Base module has been implemented by means of an abstract class, generic class or interface
that will specialize in the following packages.

In particular, the Handler class collects InputProgram and OptionDescriptor objects communicated by
the user.

For what the asynchronous mode is concerned, the interface Service depends from the interface CallBack, since
once the reasoning service has terminated, the result of the computation is returned back via a class CallBack.

1.1.2 Platforms module implementation

In order to support a new platform, the Handler and Service components must be adapted.

As for the Android platform, we developed an AndroidHandler that handles the execution of an
AndroidService, which provides facilities to manage the execution of a solver on the Android platform.

Similarly, for the desktop platform we developed a DesktopHandler and a DesktopService, which generalizes
the usage of a solver on the desktop platform, allowing both synchronous and asynchronous execution modes.

1.1.3 Languages module implementation

This module includes specific classes for the management of input and output to ASP, Datalog and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class, that allows to translate input
and output into Narrative objects. Such translations are guided by ANTLR4 library and Narrative Annotations , a form
of metadata that mark Narrative code and provide information that is not part of the program itself: they have no direct
effect on the operation of the code they annotate.

In our setting, we make use of such feature so that it is possible to translate facts into strings and vice-versa via two
custom annotations, defined according to the following syntax:

• @Id (string_name) : the target must be a class, and defines the predicate name (in the ASP/Datalog case) and
the action name (in the PDDL case) the class is mapped to;

• @Param (integer_position) : the target must be a field of a class annotated via @Id, and defines the term (and
its position) in the atom (in the ASP/Datalog case) and in the action (in the PDDL case) the field is mapped to.

3

../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1InputProgram.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1OptionDescriptor.html
../_static/doxygen/narrative/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Service.html
../_static/doxygen/narrative/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
../_static/doxygen/narrative/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/narrative/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Service.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidHandler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
https://www.antlr.org/
https://docs.oracle.com/narrativese/tutorial/narrative/annotations


EmbASP Documentation, Release 7.1.0

By means of the Narrative Reflection mechanisms, annotations are examined at runtime, and taken into account to
properly define the translation.

If the classes intended for the translation are not annotated or not correctly annotated, an exception is raised.

In addition to the Mapper, this module features three sub-modules which are more strictly related to ASP, PDDL and
Datalog.

1.1.4 Specialization module Implementation

The classes DLVAnswerSets, DLV2AnswerSets, ClingoAnswerSets, DLVHEXAnswerSets implement
specific extensions of the AnswerSets class, the SPDPlan class extends Plan, while IDLVMinimalModels
extends MinimalModels . These classes are in charge of manipulating the output of the respective solvers (e.g.
IDLV).

Moreover, this module can contain classes extending OptionDescriptor to implement specific options of the
solver at hand.

1.1.5 Class Diagram

A complete UML Class Diagram is available here.

For further information, contact embasp@mat.unical.it or visit our website.

1.2 Theoretic implementation

The following figure provides some details about classes and interfaces of the implementation.

1.2.1 Base module implementation

Each component in the Base module has been implemented by means of generic class or interface that will specialize
in the following packages.

In particular, the Handler class collects InputProgram and OptionDescriptor objects communicated by
the user.

For what the asynchronous mode is concerned, the class Service depends from the interface CallBack, since once
the reasoning service has terminated, the result of the computation is returned back via a class CallBack.

4 Chapter 1. Documentation

https://docs.oracle.com/narrativese/8/docs/technotes/guides/reflection/index.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv_1_1DLVAnswerSets.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1DLV2AnswerSets.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1clingo_1_1ClingoAnswerSets.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlvhex_1_1DLVHEXAnswerSets.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1AnswerSets.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1solver__planning__domains_1_1SPDPlan.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1Plan.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1idlv_1_1IDLVMinimalModels.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1MinimalModels.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1OptionDescriptor.html
../_static/complete_diagram_narrative.svg
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html
../_static/doxygen/theoretic/classbase_1_1input__program_1_1InputProgram.html
../_static/doxygen/theoretic/classbase_1_1option__descriptor_1_1OptionDescriptor.html
../_static/doxygen/theoretic/classbase_1_1service_1_1Service.html
../_static/doxygen/theoretic/classbase_1_1callback_1_1Callback.html
../_static/doxygen/theoretic/classbase_1_1callback_1_1Callback.html


EmbASP Documentation, Release 7.1.0

1.2.2 Platforms module implementation

In order to support a new platform, the Handler and Service components must be adapted.

For the desktop platform we developed a DesktopHandler and a DesktopService, which generalizes the usage
of a solver on the desktop platform, allowing both synchronous and asynchronous execution modes.

1.2.3 Languages module implementation

This module includes specific classes for the management of input and output to ASP, Datalog and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class, that allows to translate input
and output into Theoretic objects. Such translations are guided by ANTLR4 library and Predicate abstract class,
also present in the module.

To make possible translate facts into strings and vice versa, the classes that want to represent a predicate, must extend
the abstract class Predicate, and must be implemented by including the following code:

• predicateName=”string_name” : must be entered as a class field and must contain the predicate name (in the
ASP/Datalog case) or the action name (in the PDDL case) to map;

• [(“class_field_name_1”, int), (“class_field_name_2”), . . . ] : Is a list that must be passed to super in the con-
structor, and must contain so many tuples how many are the class field, containing the field name, sorted by the
position of the terms they represent, and optionally the keyword int if the field represents an integer.

Thanks to the structure of the Predicate class, this information is passed to the Mapper class, to correctly perform
the translation mechanism.

If the classes intended for the translation are not constructed correctly in this way, an exception is raised.

In addition to the Mapper, this module features three sub-modules which are more strictly related to ASP, Datalog
and PDDL.

1.2.4 Specialization module implementation

The classes DLVAnswerSets, DLV2AnswerSets, ClingoAnswerSets, DLVHEXAnswerSets implement
specific extensions of the AnswerSets class, the SPDPlan class extends Plan, while IDLVMinimalModels
extends MinimalModels . These classes are in charge of manipulating the output of the respective solvers (e.g.
IDLV).

Moreover, this module can contain classes extending OptionDescriptor to implement specific options of the
solver at hand.

1.2.5 Class Diagram

A complete UML Class Diagram is available here.

For further information, contact embasp@mat.unical.it or visit our website.

1.2. Theoretic implementation 5

../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html
../_static/doxygen/theoretic/classbase_1_1service_1_1Service.html
../_static/doxygen/theoretic/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/theoretic/classplatforms_1_1desktop_1_1desktop__service_1_1DesktopService.html
../_static/doxygen/theoretic/classlanguages_1_1mapper_1_1Mapper.html
../_static/doxygen/theoretic/classlanguages_1_1mapper_1_1Mapper.html
https://www.antlr.org/
../_static/doxygen/theoretic/classlanguages_1_1predicate_1_1Predicate.html
../_static/doxygen/theoretic/classlanguages_1_1predicate_1_1Predicate.html
../_static/doxygen/theoretic/classlanguages_1_1predicate_1_1Predicate.html
../_static/doxygen/theoretic/classlanguages_1_1mapper_1_1Mapper.html
../_static/doxygen/theoretic/classlanguages_1_1mapper_1_1Mapper.html
../_static/doxygen/theoretic/classspecializations_1_1dlv_1_1dlv__answer__sets_1_1DLVAnswerSets.html
../_static/doxygen/theoretic/classspecializations_1_1dlv2_1_1dlv2__answer__sets_1_1DLV2AnswerSets.html
../_static/doxygen/theoretic/classspecializations_1_1clingo_1_1clingo__answer__sets_1_1ClingoAnswerSets.html
../_static/doxygen/theoretic/classspecializations_1_1dlvhex_1_1dlvhex__answer__sets_1_1DLVHEXAnswerSets.html
../_static/doxygen/theoretic/classlanguages_1_1asp_1_1answer__sets_1_1AnswerSets.html
../_static/doxygen/theoretic/classspecializations_1_1solver__planning__domains_1_1spd__plan_1_1SPDPlan.html
../_static/doxygen/theoretic/classlanguages_1_1pddl_1_1plan_1_1Plan.html
../_static/doxygen/theoretic/classspecializations_1_1idlv_1_1idlv__minimal__models_1_1IDLVMinimalModels.html
../_static/doxygen/theoretic/classlanguages_1_1asp_1_1minimal__models_1_1MinimalModels.html
../_static/doxygen/theoretic/classbase_1_1option__descriptor_1_1OptionDescriptor.html
../_static/complete_diagram_theoretic.svg
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/


EmbASP Documentation, Release 7.1.0

1.3 Programmatic implementation

The following figure provides some details about classes and interfaces of the implementation.

1.3.1 Base module implementation

Each component in the Base module has been implemented by means of abstract class, generic class or interface that
will specialize in the following packages.

In particular, the Handler class collects InputProgram and OptionDescriptor objects communicated by
the user.

For what the asynchronous mode is concerned, the class Service depends from the interface CallBack, since once
the reasoning service has terminated, the result of the computation is returned back via a class CallBack.

1.3.2 Platforms module implementation

In order to support a new platform, the Handler and Service components must be adapted.

For the desktop platform we developed a DesktopHandler and a DesktopService, which generalizes the usage
of a solver on the desktop platform, allowing both synchronous and asynchronous execution modes.

1.3.3 Languages module implementation

This module includes specific classes for the management of input and output to ASP, Datalog and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class, that allows to translate input
and output into Programmatic objects. Such translations are guided by ANTLR4 library and Programmatic Attributes,
a form of metadata that mark Programmatic code and provide information that is not part of the program itself: they
have no direct effect on the operation of the code they annotate.

In our setting, we make use of such features so that it is possible to translate facts into strings and vice-versa via two
custom attributes, defined according to the following syntax:

• [Id(string_name)] : the target must be a class, and defines the predicate name (in the ASP/Datalog case) and the
action name (in the PDDL case) the class is mapped to;

• [Param(integer_position)] : the target must be a field of a class annotated via [Id(string_name)], and defines the
term (and its position) in the atom (in the ASP/Datalog case) and in the action (in the PDDL case) the field is
mapped to.

By means of the Programmatic Reflection mechanism, attributes are examined at runtime, and taken into account to
properly define the translation.

If the classes intended for the translation are not annotated or not correctly annotated, an exception is raised.

In addition to the Mapper, this module features three sub-modules which are more strictly related to ASP, Datalog
and PDDL.

6 Chapter 1. Documentation

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classbase_1_1InputProgram.html
../_static/doxygen/cSharp/classbase_1_1OptionDescriptor.html
../_static/doxygen/cSharp/interfacebase_1_1Service.html
../_static/doxygen/cSharp/interfacebase_1_1ICallback.html
../_static/doxygen/cSharp/interfacebase_1_1ICallback.html
../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/interfacebase_1_1Service.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html
https://www.antlr.org/
https://docs.microsoft.com/en-us/dotnet/programmatic/programming-guide/concepts/attributes/
https://docs.microsoft.com/en-us/dotnet/programmatic/programming-guide/concepts/reflection
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1Mapper.html


EmbASP Documentation, Release 7.1.0

1.3.4 Specialization module implementation

The classes DLVAnswerSets, DLV2AnswerSets, ClingoAnswerSets, DLVHEXAnswerSets implement
specific extensions of the AnswerSets class, the SPDPlan class extends Plan, while IDLVMinimalModels
extends MinimalModels . These classes are in charge of manipulating the output of the respective solvers (e.g.
IDLV).

Moreover, this module can contain classes extending OptionDescriptor to implement specific options of the
solver at hand.

1.3.5 Class Diagram

A complete UML Class Diagram is available here.

For further information, contact embasp@mat.unical.it or visit our website.

1.4 Technical documentation

1.4.1 Doxygen

• Narrative Doxygen documentation

• Theoretic Doxygen documentation

• Programmatic Doxygen documentation

For further information, contact embasp@mat.unical.it or visit our website.

1.5 Implementations

• Narrative implementation

• Theoretic implementation

• Programmatic implementation

1.4. Technical documentation 7

../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv_1_1DLVAnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1DLV2AnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1clingo_1_1ClingoAnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlvhex_1_1DLVHEXAnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1AnswerSets.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1solver__planning__domains_1_1SPDPlan.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1Plan.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1idlv_1_1IDLVMinimalModels.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1MinimalModels.html
../_static/doxygen/cSharp/classbase_1_1OptionDescriptor.html
../_static/complete_diagram_programmatic.svg
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
../_static/doxygen/narrative/index.html
../_static/doxygen/theoretic/index.html
../_static/doxygen/cSharp/index.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/


EmbASP Documentation, Release 7.1.0

1.6 Technical documentation

• Technical documentation

8 Chapter 1. Documentation



CHAPTER

TWO

EXAMPLES

2.1 Shortest-path ASP Narrative

2.1.1 Getting started

The framework is released as JAR file to be used on a Desktop platform, therefore it can be easily imported and used
in any Narrative project.

The framework needs ANTLR4 library for its operation. You can download the JAR and include directly in your
project or you can use Gradle or Maven.

2.1.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the shortest-path problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to create Narrative object constituting ASP predicates.

To this purpose, the following classes are intended to represent possible predicates that an ASP program can use:

@Id("edge")
public class Edge {

@Param(0)

(continues on next page)

9

https://www.antlr.org
https://www.mat.unical.it/calimeri/projects/embasp/files/ShortestPathNarrative.zip


EmbASP Documentation, Release 7.1.0

(continued from previous page)

private int from;

@Param(1)
private int to;

@Param(2)
private int weight;

public Edge(int from, int to, int weight) {
this.from = from;
this.to = to;
this.weight = weight;

}

[...]
}

@Id("path")
public class Path {

@Param(0)
private int from;

@Param(1)
private int to;

@Param(2)
private int weight;

public Path(int from, int to, int weight) {
this.from = from;
this.to = to;
this.weight = weight;

}

[...]
}

At this point, supposing that we have embedded the DLV2 solver in this project, we can start deploying our application:

public class ShortestPath {

private static int from, to; // source and destination node
private static ArrayList<Integer> sortedPath; // edges in the shortest path

→˓(sorted)

public static void main(String[] args) {

try {

Handler handler = new DesktopHandler(new DLV2DesktopService("executable/dlv2"));

ASPMapper.getInstance().registerClass(Edge.class);
ASPMapper.getInstance().registerClass(Path.class);

InputProgram input = new ASPInputProgram();

(continues on next page)

10 Chapter 2. Examples



EmbASP Documentation, Release 7.1.0

(continued from previous page)

from = 0;
to = 7;

String rules = "from(" + from + "). to(" + to + ")."
+ "path(X,Y,W) | notPath(X,Y,W) :- from(X), edge(X,Y,W)."
+ "path(X,Y,W) | notPath(X,Y,W) :- path(_,X,_), edge(X,Y,W), not to(X)."
+ "visited(X) :- path(_,X,_)."
+ ":- to(X), not visited(X)."
+ ":~ path(X,Y,W). [W@1 ,X,Y]";

input.addProgram(rules);

for(Edge edge : getEdges())
input.addObjectInput(edge);

handler.addProgram(input);

AnswerSets answerSets = (AnswerSets) handler.startSync();

for(AnswerSet answerSet : answerSets.getOptimalAnswerSets()) {

ArrayList<Path> path = new ArrayList<Path>(); // edges in the shortest path
→˓(unsorted)

int sum = 0; // total weight of the path

for(Object obj : answerSet.getAtoms()) {
if(obj instanceof Path) {

path.add((Path)obj);
sum += ((Path)obj).getWeight();

}
}

join(from,path,sortedPath); // sorts the edges
print(sortedPath,sum); // shows the path

}

} catch (Exception e) {
e.printStackTrace();

}

}

private static ArrayList<Edge> getEdges() {
ArrayList<Edge> edges = new ArrayList<Edge>();

edges.add(new Edge(0,1,1));
edges.add(new Edge(0,2,4));
edges.add(new Edge(1,2,2));
edges.add(new Edge(1,3,4));
edges.add(new Edge(1,4,1));
edges.add(new Edge(2,4,4));
edges.add(new Edge(3,5,6));
edges.add(new Edge(3,6,1));
edges.add(new Edge(4,3,1));
edges.add(new Edge(6,4,5));
edges.add(new Edge(6,5,9));

(continues on next page)

2.1. Shortest-path ASP Narrative 11



EmbASP Documentation, Release 7.1.0

(continued from previous page)

edges.add(new Edge(6,7,1));
edges.add(new Edge(7,5,2));

return edges;
}

[...]

}

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the parameter
DLV2DesktopService with a string representing the path to the DLV2 local solver.

The ASPMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge representing facts, rules and constraints of the ASP program are added to an
ASPInputProgram, and the ASPInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

The output predicates can be managed accordingly to the user’s desiderata. In this example the Path predicates, that
represent the shortest path, are collected, sorted, and printed as well as the total weight of the path.

For further information, contact embasp@mat.unical.it or visit our website.

2.2 Shortest-path ASP Theoretic

2.2.1 Getting started

The framework is released as EGG file to be used on a Desktop platform, therefore it can be easily installed in a
Theoretic installation.

The framework needs ANTLR4 library for its operation.

2.2.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the shortest-path problem.

The complete code of this example is freely available here.

12 Chapter 2. Examples

../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1desktop_1_1DLV2DesktopService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org/
https://www.mat.unical.it/calimeri/projects/embasp/files/ShortestPathTheoretic.zip


EmbASP Documentation, Release 7.1.0

We will make use of the annotation-guided mapping, in order to create Theoretic object constituting ASP predicates.

To this purpose, the following classes are intended to represent possible predicates that an ASP program can use:

class Edge(Predicate):
predicate_name = "edge"

def __init__(self, source=None, destination=None, weight=None):
Predicate.__init__(self, [("source"),("destination"),("weight")])
self.source = source
self.destination = destination
self.weight = weight

[...]

class Path(Predicate):
predicate_name = "path"

def __init__(self, source=None, destination=None, weight=None):
Predicate.__init__(self, [("source"),("destination"),("weight")])
self.source = source
self.destination = destination
self.weight = weight

[...]

At this point, supposing that we have embedded the DLV2 solver in this project, we can start deploying our application:

def getEdges():

edges = []

edges.append(Edge(0,1,1))
edges.append(Edge(0,2,4))
edges.append(Edge(1,2,2))
edges.append(Edge(1,3,4))
edges.append(Edge(1,4,1))
edges.append(Edge(2,4,4))
edges.append(Edge(3,5,6))
edges.append(Edge(3,6,1))
edges.append(Edge(4,3,1))

(continues on next page)

2.2. Shortest-path ASP Theoretic 13



EmbASP Documentation, Release 7.1.0

(continued from previous page)

edges.append(Edge(6,4,5))
edges.append(Edge(6,5,9))
edges.append(Edge(6,7,1))
edges.append(Edge(7,5,2))

return edges

try:

handler = DesktopHandler(DLV2DesktopService("../../executable/dlv2"))

ASPMapper.get_instance().register_class(Edge)
ASPMapper.get_instance().register_class(Path)

inputProgram = ASPInputProgram()

source = 0 # source node
destination = 7 # destination node

rules = "source(" + str(self.source) + "). destination(" + str(self.destination) +
→˓")."
rules += "path(X,Y,W) | notPath(X,Y,W) :- source(X), edge(X,Y,W)."
rules += "path(X,Y,W) | notPath(X,Y,W) :- path(_,X,_), edge(X,Y,W), not to(X)."
rules += "visited(X) :- path(_,X,_)."
rules += ":- destination(X), not visited(X)."
rules += ":~ path(X,Y,W). [W@1 ,X,Y]"

inputProgram.add_program(rules)
inputProgram.add_objects_input(self.getEdges())

handler.add_program(inputProgram)

answerSets = handler.start_sync()

for answerSet in answerSets.get_optimal_answer_sets():
path = [] # edges in the shortest path (unsorted)
sum_ = 0 # total weight of the path

for obj in answerSet.get_atoms():
if isinstance(obj, Path):

path.append(obj)
sum_ += int(obj.get_weight())

sortedPath = [] # edges in the shortest path (sorted)
join(source, path, sortedPath) # sorts the edges
show(sortedPath, sum_) # shows the path

except Exception as e:
print(str(e))

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the parameter
DLV2DesktopService with a string representing the path to the DLV2 local solver.

The ASPMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge representing facts, rules and constraints of the ASP program are added to an
ASPInputProgram, and the ASPInputProgram is added to the Handler.

14 Chapter 2. Examples

../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html
../_static/doxygen/theoretic/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/theoretic/classspecializations_1_1dlv2_1_1desktop_1_1dlv2__desktop__service_1_1DLV2DesktopService.html
../_static/doxygen/theoretic/classlanguages_1_1asp_1_1asp__mapper_1_1ASPMapper.html
../_static/doxygen/theoretic/classlanguages_1_1asp_1_1asp__input__program_1_1ASPInputProgram.html
../_static/doxygen/theoretic/classlanguages_1_1asp_1_1asp__input__program_1_1ASPInputProgram.html
../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html


EmbASP Documentation, Release 7.1.0

Finally the solver is invoked, and the output is retrieved.

The output predicates can be managed accordingly to the user’s desiderata. In this example the Path predicates, that
represent the shortest path, are collected, sorted, and printed as well as the total weight of the path.

For further information, contact embasp@mat.unical.it or visit our website.

2.3 Shortest-path ASP Programmatic

2.3.1 Getting started

The framework is released as DLL file to be used on a Desktop platform, therefore it can be easily added and used in
any Programmatic project.

2.3.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the shortest-path problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to create Programmatic object constituting ASP predi-
cates.

To this purpose, the following classes are intended to represent possible predicates that an ASP program can use:

[Id("edge")]
class Edge
{

[Param(0)]
private int from;

[Param(1)]
private int to;

(continues on next page)

2.3. Shortest-path ASP Programmatic 15

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.mat.unical.it/calimeri/projects/embasp/files/ShortestPathProgrammatic.zip


EmbASP Documentation, Release 7.1.0

(continued from previous page)

[Param(2)]
private int weight;

public Edge(int from, int to, int weight)
{
this.from = from;
this.to = to;
this.weight = weight;

}

[Id("path")]
class Path
{

[Param(0)]
private int from;

[Param(1)]
private int to;

[Param(2)]
private int weight;

public Path(int from, int to, int weight)
{
this.from = from;
this.to = to;
this.weight = weight;

}

At this point, supposing that we have embedded the DLV2 solver in this project, we can start deploying our application:

class ShortestPath
{

private static int from, to; // source and destination node
private static List<int> sortedPath; // edges in the shorted path (sorted)

public static void Main(string[] args)
{
try
{

Handler handler = new DesktopHandler(new DLV2DesktopService("../../../
→˓executable/dlv2.win"));

ASPMapper.Instance.RegisterClass(typeof(Edge));
ASPMapper.Instance.RegisterClass(typeof(Path));

InputProgram input = new ASPInputProgram();

from = 0;
to = 7;

String rules = "from(" + from + ").to(" + to + ")." +
"path(X,Y,W) | notPath(X,Y,W) :- from(X), edge(X,Y,W)." +
"path(X,Y,W) | notPath(X,Y,W) :- path(_,X,_), edge(X,Y,W), not to(X)." +
"visited(X) :- path(_,X,_)." +

(continues on next page)

16 Chapter 2. Examples



EmbASP Documentation, Release 7.1.0

(continued from previous page)

":- to(X), not visited(X)." +
":~ path(X,Y,W). [W@1 ,X,Y]";

input.AddProgram(rules);

foreach (Edge edge in getEdges())
{

input.AddObjectInput(edge);
}

handler.AddProgram(input);

AnswerSets answerSets = (AnswerSets)handler.StartSync();

foreach (AnswerSet answerSet in answerSets.GetOptimalAnswerSets())
{

List<Path> path = new List<Path>(); // edges in the shortest path
→˓(unsorted)

int sum = 0; // total weight of the path

foreach (object obj in answerSet.Atoms)
{
if (typeof(Path).IsInstanceOfType(obj))
{

path.Add((Path)obj);
sum += ((Path)obj).getWeight();

}
}

join(from, path, sortedPath); // sorts the edges
print(sortedPath, sum); // show the result

}

}
catch (Exception e)
{

Console.WriteLine(e.Source);
}

}

private static List<Edge> getEdges()
{
List<Edge> edges = new List<Edge>();

edges.Add(new Edge(0, 1, 1));
edges.Add(new Edge(0, 2, 4));
edges.Add(new Edge(1, 2, 2));
edges.Add(new Edge(1, 3, 4));
edges.Add(new Edge(1, 4, 1));
edges.Add(new Edge(2, 4, 4));
edges.Add(new Edge(3, 5, 6));
edges.Add(new Edge(3, 6, 1));
edges.Add(new Edge(4, 3, 1));
edges.Add(new Edge(6, 4, 5));
edges.Add(new Edge(6, 5, 9));
edges.Add(new Edge(6, 7, 1));
edges.Add(new Edge(7, 5, 2));

(continues on next page)

2.3. Shortest-path ASP Programmatic 17



EmbASP Documentation, Release 7.1.0

(continued from previous page)

return edges;
}

[...]

}

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the parameter
DLV2DesktopService with a string representing the path to the DLV2 local solver.

The ASPMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge representing facts, rules and constraints of the ASP program are added to an
ASPInputProgram, and the ASPInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

The output predicates can be managed accordingly to the user’s desiderata. In this example the Path predicates, that
represent the shortest path, are collected, sorted, and printed as well as the total weight of the path.

For further information, contact embasp@mat.unical.it or visit our website.

2.4 Blocks-world PDDL Narrative

2.4.1 Getting started

The framework is released as JAR file to be used on a Desktop platform, therefore it can be easily imported and used
in any Narrative project.

The framework needs ANTLR4 library for its operation. You can download the JAR and include directly in your
project or you can use Gradle or Maven.

2.4.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the blocks-world problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to retrieve the actions constituting a PDDL plan via
Narrative objects.

To this purpose, the following classes are intended to represent possible actions that a blocks-world solution plan can
feature:

18 Chapter 2. Examples

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv2_1_1desktop_1_1DLV2DesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPInputProgram.html
../_static/doxygen/cSharp/classbase_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org
https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Desktop_BlocksWorld_Narrative.zip


EmbASP Documentation, Release 7.1.0

@Id("pick-up")
public class PickUp {

@Param(0)
private String block;

[...]
}

@Id("put-down")
public class PutDown {

@Param(0)
private String block;

[...]
}

@Id("stack")
public class Stack {

@Param(0)
private String block1;

@Param(1)
private String block2;

[...]
}

@Id("unstack")
public class Unstack {

@Param(0)
private String block1;

@Param(1)
private String block2;

[...]
}

At this point, supposing that we are given two files defining the blocks-world domain and a problem instance, we can
start deploying our application:

public class Blocksworld {

private static String domainFileName = "domain.pddl";
private static String problemFileName = "p01.pddl";;

public static void main(String[] args) {
Handler handler = new DesktopHandler(new SPDDesktopService());

final InputProgram inputProgramDomain = new PDDLInputProgram(PDDLProgramType.
→˓DOMAIN);

inputProgramDomain.addFilesPath(domainFileName);

(continues on next page)

2.4. Blocks-world PDDL Narrative 19



EmbASP Documentation, Release 7.1.0

(continued from previous page)

final InputProgram inputProgramProblem = new PDDLInputProgram(PDDLProgramType.
→˓PROBLEM);

inputProgramProblem.addFilesPath(problemFileName);

handler.addProgram(inputProgramDomain);
handler.addProgram(inputProgramProblem);

try {

PDDLMapper.getInstance().registerClass(PickUp.class);
PDDLMapper.getInstance().registerClass(PutDown.class);
PDDLMapper.getInstance().registerClass(Stack.class);
PDDLMapper.getInstance().registerClass(Unstack.class);

Plan plan = (Plan)(handler.startSync());

for (final Object obj : plan.getActionsObjects())
if (obj instanceof PickUp || obj instanceof Stack || obj instanceof Unstack

→˓|| obj instanceof PutDown)
System.out.println(obj.toString());

} catch (Exception e) {
e.printStackTrace();

}
}

}

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the required
parameter SPDDesktopService.

Then it’s set-up the input to the solver; since PDDL requires separate definitions for domain and problem, two
PDDLInputProgram are created and then given to the handler.

The next lines inform the PDDLMapper about what classes are intended to map the output actions.

Finally the solver is invoked, and the output is retrieved.

The output actions can be managed accordingly to the user’s desiderata.

For further information, contact embasp@mat.unical.it or visit our website.

2.5 Blocks-world PDDL Theoretic

2.5.1 Getting started

The framework is released as EGG file to be used on a Desktop platform, therefore it can be easily installed in a
Theoretic installation.

The framework needs ANTLR4 library for its operation.

20 Chapter 2. Examples

../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLInputProgram.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLMapper.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org/


EmbASP Documentation, Release 7.1.0

2.5.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the blocks-world problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to retrieve the actions constituting a PDDL plan via
Theoretic objects.

To this purpose, the following classes are intended to represent possible actions that a blocks-world solution plan can
feature:

class PickUp(Predicate):
predicateName="pick-up"

def __init__(self, block=None):
super(PickUp, self).__init__([("block")])
self.block = block

[...]

class PutDown (Predicate):
predicateName="put-down"

def __init__(self, block=None):
super(PutDown, self).__init__([("block")])
self.block = block

[...]

class Stack (Predicate):
predicateName="stack"

def __init__(self, block1=None, block2=None):
super(Stack, self).__init__([("block1"), ("block2")])
self.block1 = block1
self.block2 = block2

[...]

class Unstack (Predicate):
predicateName="unstack"

def __init__(self, block1=None, block2=None):
super(Unstack, self).__init__([("block1"), ("block2")])
self.block1 = block1
self.block2 = block2

[...]

At this point, supposing that we are given two files defining the blocks-world domain and a problem instance, we can
start deploying our application:

handler = DesktopHandler(SPDDesktopService())

(continues on next page)

2.5. Blocks-world PDDL Theoretic 21

https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Desktop_BlocksWorld_Theoretic.zip


EmbASP Documentation, Release 7.1.0

(continued from previous page)

input_domain = PDDLInputProgram(PDDLProgramType.DOMAIN)
input_domain.add_files_path("../domain.pddl")

input_problem= PDDLInputProgram(PDDLProgramType.PROBLEM)
input_problem.add_files_path("../p01.pddl")

handler.add_program(input_domain)
handler.add_program(input_problem)

PDDLMapper.get_instance().register_class(PickUp)
PDDLMapper.get_instance().register_class(PutDown)
PDDLMapper.get_instance().register_class(Stack)
PDDLMapper.get_instance().register_class(Unstack)

output = handler.start_sync()

for obj in output.get_actions_objects():
if isinstance(obj, PickUp) | isinstance(obj, PutDown) | isinstance(obj, Stack) |

→˓isinstance(obj, Unstack) :
print(obj)

The file contains an Handler instance as field, that is initialized with a DesktopHandler using the required
parameter SPDDesktopService.

Then it’s set-up the input to the solver; since PDDL requires separate definitions for domain and problem, two
PDDLInputProgram are created and then given to the handler.

The next lines inform the PDDLMapper about what classes are intended to map the output actions.

Finally the solver is invoked, and the output is retrieved.

The output actions can be managed accordingly to the user’s desiderata.

For further information, contact embasp@mat.unical.it or visit our website.

2.6 Blocks-world PDDL Programmatic

2.6.1 Getting started

The framework is released as DLL file to be used on a Desktop platform, therefore it can be easily added and used in
any Programmatic project.

22 Chapter 2. Examples

../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html
../_static/doxygen/theoretic/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/theoretic/classplatforms_1_1desktop_1_1desktop__service_1_1DesktopService.html
../_static/doxygen/theoretic/classlanguages_1_1pddl_1_1pddl__input__program_1_1PDDLInputProgram.html
../_static/doxygen/theoretic/classlanguages_1_1pddl_1_1pddl__mapper_1_1PDDLMapper.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/


EmbASP Documentation, Release 7.1.0

2.6.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to solve the blocks-world problem.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to retrieve the actions constituting a PDDL plan via
Programmatic objects.

To this purpose, the following classes are intended to represent possible actions that a blocks-world solution plan can
feature:

[Id("pick-up")]
class PickUp
{

[Param(0)]
private string block;

[...]
}

[Id("put-down")]
class PutDown
{

[Param(0)]
private string block;

[...]
}

[Id("stack")]
class Stack
{

[Param(0)]
private string block1;

[Param(1)]
private string block2;

[...]
}

[Id("unstack")]
class Unstack
{

[Param(0)]
private string block1;

[Param(1)]
private string block2;

[...]
}

At this point, supposing that we are given two files defining the blocks-world domain and a problem instance, we can
start deploying our application:

2.6. Blocks-world PDDL Programmatic 23

https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Desktop_BlocksWorld_Programmatic.zip


EmbASP Documentation, Release 7.1.0

class Program
{

static void Main(string[] args)
{

Handler handler = new DesktopHandler(new SPDDesktopService());

InputProgram inputDomain = new PDDLInputProgram(PDDLProgramType.DOMAIN);
inputDomain.AddFilesPath("domain.pddl");

InputProgram inputProblem = new PDDLInputProgram(PDDLProgramType.PROBLEM);
inputProblem.AddFilesPath("p01.pddl");

handler.AddProgram(inputDomain);
handler.AddProgram(inputProblem);

try
{

PDDLMapper.Instance.RegisterClass(typeof(PickUp));
PDDLMapper.Instance.RegisterClass(typeof(PutDown));
PDDLMapper.Instance.RegisterClass(typeof(Stack));
PDDLMapper.Instance.RegisterClass(typeof(Unstack));

Plan plan = (Plan)handler.StartSync();

foreach(object obj in plan.ActionsObjects)
{

if (typeof(PickUp).IsInstanceOfType(obj) || typeof(PutDown).
→˓IsInstanceOfType(obj) ||

typeof(Stack).IsInstanceOfType(obj) || typeof(Unstack).
→˓IsInstanceOfType(obj))

{
Console.WriteLine(obj.ToString());

}
}

}
catch (Exception e)
{

Console.WriteLine(e.Message);
}

}
}

The class contains an Handler instance as field, that is initialized with a DesktopHandler using the required
parameter SPDDesktopService.

Then it’s set-up the input to the solver; since PDDL requires separate definitions for domain and problem, two
PDDLInputProgram are created and then given to the handler.

The next lines inform the PDDLMapper about what classes are intended to map the output actions.

Finally the solver is invoked, and the output is retrieved.

The output actions can be managed accordingly to the user’s desiderata.

24 Chapter 2. Examples

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1solver__planning__domains_1_1desktop_1_1SPDDesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLInputProgram.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1pddl_1_1PDDLMapper.html


EmbASP Documentation, Release 7.1.0

For further information, contact embasp@mat.unical.it or visit our website.

2.7 Transitive Closure Datalog Narrative

2.7.1 Getting started

The framework is released as JAR file to be used on a Desktop platform, therefore it can be easily imported and used
in any Narrative project.

The framework needs ANTLR4 library for its operation. You can download the JAR and include directly in your
project or you can use Gradle or Maven.

2.7.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to compute the transitive closure of a graph.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to create Narrative object constituting Datalog predicates.

To this purpose, the following classes are intended to represent possible predicates that a Datalog program can use:

@Id("edge")
public class Edge {

@Param(0)
private int from;

@Param(1)
private int to;

(continues on next page)

2.7. Transitive Closure Datalog Narrative 25

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org
https://github.com/DeMaCS-UNICAL/EmbASP-Narrative/tree/master/app/src/test/narrative/it/unical/mat/embasp/specializations/idlv


EmbASP Documentation, Release 7.1.0

(continued from previous page)

public Edge(int from, int to) {
this.from = from;
this.to = to;

}

[...]
}

@Id("path")
public class Path {

@Param(0)
private int from;

@Param(1)
private int to;

public Path(int from, int to) {
this.from = from;
this.to = to;

}

[...]
}

At this point, supposing that we have embedded the IDLV Datalog engine in this project, we can start deploying our
application:

public class TransitiveClosure {

public static void main(String[] args) {

try {
InputProgram input = new DatalogInputProgram();
Handler handler = new DesktopHandler(new IDLVDesktopService("executables/idlv

→˓"));
DatalogMapper.getInstance().registerClass(Path.class);
input.addProgram("path(X,Y) :- edge(X,Y).");
input.addProgram("path(X,Y) :- path(X,Z), path(Z,Y). ");
handler.addProgram(input);

input.addObjectInput(new Edge(1,2));
input.addObjectInput(new Edge(2,3));
input.addObjectInput(new Edge(2,4));
input.addObjectInput(new Edge(3,5));
input.addObjectInput(new Edge(5,6));

MinimalModels minimalModels = (MinimalModels) handler.startSync();

for (MinimalModel m : minimalModels.getMinimalModels()) {
for (Object a : m.getAtomsAsObjectSet()) {

if (a instanceof Path) {
System.out.println(a);

}
}

}

(continues on next page)

26 Chapter 2. Examples



EmbASP Documentation, Release 7.1.0

(continued from previous page)

} catch (Exception e) {
e.printStackTrace();

}

}

[...]

}

The main method contains an Handler instance, that is initialized with a DesktopHandler using the parameter
IDLVDesktopService with a string representing the path to the IDLV local grounder.

The DatalogMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge objects representing facts, rules and constraints of the Datalog program are added to an
DatalogInputProgram, and the DatalogInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

In this example the Path predicates, represent all the arcs in the transitive closure of the starting graph. The output
predicates can be managed accordingly to the user’s desiderata, as they are simply objects.

For further information, contact embasp@mat.unical.it or visit our website.

2.8 Transitive Closure Datalog Theoretic

2.8.1 Getting started

The framework is released as WHL file to be used on a Desktop platform, therefore it can be easily installed via pip.

The framework needs ANTLR4 library for its operation.

2.8. Transitive Closure Datalog Theoretic 27

../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1idlv_1_1desktop_1_1IDLVDesktopService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1DatalogMapper.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1DatalogInputProgram.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1DatalogInputProgram.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org


EmbASP Documentation, Release 7.1.0

2.8.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to compute the transitive closure of a graph.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to create Theoretic object constituting Datalog predi-
cates.

To this purpose, the following classes are intended to represent possible predicates that a Datalog program can use:

class Edge(Predicate):
predicate_name = "edge"

def __init__(self, source=None, destination=None):
Predicate.__init__(self, [("source"),("destination")])
self.source = source
self.destination = destination

[...]

class Path(Predicate):
predicate_name = "path"

def __init__(self, source=None, destination=None, weight=None):
Predicate.__init__(self, [("source"),("destination")])
self.source = source
self.destination = destination

[...]

At this point, supposing that we have embedded the IDLV Datalog engine in this project, we can start deploying our
application:

28 Chapter 2. Examples

https://github.com/DeMaCS-UNICAL/EmbASP-Theoretic/tree/master/test/specialization/idlv


EmbASP Documentation, Release 7.1.0

def test_find_reachable_nodes(self):
try:

input = DatalogInputProgram()
handler = DesktopHandler(IDLVDesktopService("executable/idlv"))
DatalogMapper.get_instance().register_class(Path)
input.add_program("path(X,Y) :- edge(X,Y).")
input.add_program("path(X,Y) :- path(X,Z), path(Z,Y). ")
handler.add_program(input)

input.add_object_input(Edge(1,2))
input.add_object_input(Edge(2,3))
input.add_object_input(Edge(2,4))
input.add_object_input(Edge(3,5))
input.add_object_input(Edge(5,6))

minimalModels = handler.start_sync()

for o in minimalModels.get_minimal_models().pop().get_atoms_as_objectset():
if isinstance(o, Path):

print(o.__str__())

except Exception as e:
print(str(e))

The main method contains an Handler instance, that is initialized with a DesktopHandler using the parameter
IDLVDesktopService with a string representing the path to the IDLV local grounder.

The DatalogMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge objects representing facts, rules and constraints of the Datalog program are added to an
DatalogInputProgram, and the DatalogInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

In this example the Path predicates, represent all the arcs in the transitive closure of the starting graph. The output
predicates can be managed accordingly to the user’s desiderata, as they are simply objects.

For further information, contact embasp@mat.unical.it or visit our website.

2.9 Transitive Closure Datalog Programmatic

2.9.1 Getting started

The framework is released as DLL file to be used on a Desktop platform, therefore it can be easily imported and used
in any Programmatic project.

The framework needs ANTLR4 library for its operation.

2.9. Transitive Closure Datalog Programmatic 29

../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html
../_static/doxygen/theoretic/classplatforms_1_1desktop_1_1desktop__handler_1_1DesktopHandler.html
../_static/doxygen/theoretic/classspecializations_1_1idlv_1_1desktop_1_1idlv__desktop__service_1_1IDLVDesktopService.html
../_static/doxygen/theoretic/classlanguages_1_1datalog_1_1datalog__mapper_1_1DatalogMapper.html
../_static/doxygen/theoretic/classlanguages_1_1datalog_1_1datalog__input__program_1_1DatalogInputProgram.html
../_static/doxygen/theoretic/classlanguages_1_1datalog_1_1datalog__input__program_1_1DatalogInputProgram.html
../_static/doxygen/theoretic/classbase_1_1handler_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/
https://www.antlr.org


EmbASP Documentation, Release 7.1.0

2.9.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Desktop application to compute the transitive closure of a graph.

The complete code of this example is freely available here.

We will make use of the annotation-guided mapping, in order to create Programmatic object constituting Datalog
predicates.

To this purpose, the following classes are intended to represent possible predicates that a Datalog program can use:

[Id("path")]
class Path
{

[Param(0)]
private int from;

[Param(1)]
private int to;

public Path()
{

this.from = 0;
this.to = 0;

}

public Path(int from, int to)
{

this.from = from;
this.to = to;

}

[...]
}

30 Chapter 2. Examples

https://github.com/DeMaCS-UNICAL/EmbASP-Programmatic/tree/master/it/unical/mat/test/specialization/idlv


EmbASP Documentation, Release 7.1.0

[Id("edge")]
class Edge
{

[Param(0)]
private int from;

[Param(1)]
private int to;

public Edge()
{

this.from = 0;
this.to = 0;

}

public Edge(int from, int to)
{

this.from = from;
this.to = to;

}

[...]
}

At this point, supposing that we have embedded the IDLV Datalog engine in this project, we can start deploying our
application:

public class TransitiveClosure
{

public static void Main(string[] args)
{

try
{

InputProgram input = new DatalogInputProgram();
DesktopHandler handler = new DesktopHandler(new IDLVDesktopService(

→˓"executables/idlv"));
DatalogMapper.Instance.RegisterClass(typeof(Path));
input.AddProgram("path(X,Y) :- edge(X,Y).");
input.AddProgram("path(X,Y) :- path(X,Z), path(Z,Y).");
handler.AddProgram(input);

input.AddObjectInput(new Edge(1,2));
input.AddObjectInput(new Edge(2,3));
input.AddObjectInput(new Edge(2,4));
input.AddObjectInput(new Edge(3,5));
input.AddObjectInput(new Edge(3,6));

IDLVMinimalModels minimalModels = (IDLVMinimalModels)handler.
→˓StartSync();

foreach (MinimalModel m in minimalModels.Minimalmodels)
{

foreach (object a in m.Atoms)
{

if (typeof(Path).IsInstanceOfType(a))
{

Console.WriteLine(a);

(continues on next page)

2.9. Transitive Closure Datalog Programmatic 31



EmbASP Documentation, Release 7.1.0

(continued from previous page)

}
}

}
}
catch (Exception e)
{

Console.WriteLine(e.ToString());
}

}

}

The main method contains an Handler instance, that is initialized with a DesktopHandler using the parameter
IDLVDesktopService with a string representing the path to the IDLV local grounder.

The DatalogMapper registers the classes created before in order to manage the input and output objects.

A string and a list of Edge objects representing facts, rules and constraints of the Datalog program are added to an
DatalogInputProgram, and the DatalogInputProgram is added to the Handler.

Finally the solver is invoked, and the output is retrieved.

In this example the Path predicates, represent all the arcs in the transitive closure of the starting graph. The output
predicates can be managed accordingly to the user’s desiderata, as they are simply Objects.

For further information, contact embasp@mat.unical.it or visit our website.

2.10 Sudoku Android

2.10.1 Getting started

In order to use the framework in your applications you have to import it as module on Android Studio

1. Import the framework module:

• Download the framework last released module.

• In the project view, right-click on your project New > Module.

• Select Import .JAR/.AAR Package.

• Select the directory in which the module has been downloaded.

2. Set the dependency:

• In the Android Studio menu: File > Project Structure .

• Select your project module (by default called app).

• In the Dependencies Tab add as Module Dependency the previously imported framework.

32 Chapter 2. Examples

../_static/doxygen/cSharp/classbase_1_1Handler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1desktop_1_1DesktopHandler.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1idlv_1_1desktop_1_1IDLVDesktopService.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1DatalogMapper.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1DatalogInputProgram.html
../_static/doxygen/cSharp/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1datalog_1_1DatalogInputProgram.html
../_static/doxygen/cSharp/classbase_1_1Handler.html
mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/


EmbASP Documentation, Release 7.1.0

2.10.2 Using EmbASP

In the following, we describe an actual usage of the framework by means of a running example; as a use case, we will
develop a simple Android application for solving Sudoku puzzles.

The complete code of this example is freely available here.

The framework features a annotation-guided mapping, offered by the ASPMapper component, for two-way transla-
tions between strings recognizable by ASP solvers and objects in the programming language at hand, directly employ-
able within applications. By means of this feature, the ASP-based aspects can be separated from the Narrative coding:
the programmer doesn’t even necessarily need to be aware of ASP.

Let us think of a user that designed (or has been given) a proper logic program P to solve a sudoku puzzle and has
also an initial schema. We assume that the initial schema is well-formed i.e. the complete schema solution exists and
is unique. A possible program P is embedded in the complete example, that, coupled with a set of facts F representing
the given initial schema, allows to obtain the only admissible solution.

By means of the annotation-guided mapping, the initial schema can be expressed in forms of Narrative objects. To this
extent, we define the class Cell, aimed at representing the single cell of the sudoku schema, as follows:

@Id("cell")
public class Cell {

@Param(0)
private int row;

@Param(1)
private int column;

@Param(2)
private int value;

[...]

}

It is worth noticing how the class has been annotated by two custom annotations, defined according to the following
syntax:

• @Id(string_name) : the target must be a class, and defines the predicate name the class is mapped to;

• @Param(integer_position) : the target must be a field of a class annotated via @Id, and defines the term (and its
position) in the ASP atom the field is mapped to.

Thanks to these annotations the ASPMapper class will be able to map Cell objects into strings properly recognizable
from the ASP solver as logic facts of the form cell(Row,Column,Value). At this point, we can create an Android
Activity Component , and start deploying our sudoku application:

public class MainActivity extends AppCompatActivity {

[...]

private Handler handler;

@Override
protected void onCreate(Bundle bundle) {
handler = new AndroidHandler(getApplicationContext(), DLVAndroidService.class);
[...]

}

(continues on next page)

2.10. Sudoku Android 33

https://www.mat.unical.it/calimeri/projects/embasp/files/EmbASP_Android_Sudoku.zip
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1languages_1_1asp_1_1ASPMapper.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html


EmbASP Documentation, Release 7.1.0

(continued from previous page)

public void onClick(final View view){
startReasoning();
[...]

}

public void startReasoning() {
InputProgram inputProgram = new InputProgram();
for (int i = 0; i < 9; i++){

for (int j = 0; j < 9; j++)
try {
if(sudokuMatrix[i][j]!=0) {

inputProgram.addObjectInput(new Cell(i, j, sudokuMatrix[i][j]));
}

} catch (Exception e) {
// Handle Exception

}
}
handler.addProgram(inputProgram);

String sudokuEncoding = getEncodingFromResources();
handler.addProgram(new InputProgram(sudokuEncoding));

Callback callback = new MyCallback();
handler.startAsync(callback);

}
}

The class contains an Handler instance as field, that is initialized when the Activity is created as an
AndroidHandler. Required parameters include the Android Context (an Android utility, needed to start an An-
droid Service Component) and the type of AndroidService to use, in our case a DLVAndroidService.

In addiction, in order to represent an initial sudoku schema, the class features a matrix of integers as another field
where position (i,j) contains the value of cell (i,j) in the initial schema; cells initially empty are represented by positions
containing zero.

The method startReasoning is in charge of actually managing the reasoning: in our case, it is invoked in response to
a click event that is generated when the user asks for the solution. It is firstly created an InputProgram object that
is filled with Cell objects representing the initial schema, which is then provided to the handler; then it is provided
with the sudoku encoding. It could be loaded, for instance, by means of an utility function that retrieves it from the
Android Resources folder, which, within Android applications, is typically meant for containing images, sounds, files
and resources in general.

At this point, the reasoning process can start; since for Android we provide only the asynchronous execution mode, a
Callback object is in charge of fetching the output when the ASP system has done.

Finally, once the computation is over, from within the callback function the output can be retrieved directly in form of
Narrative objects. For instance, in our case an inner class MyCallback implements the interface Callback:

private class MyCallback implements Callback {

@Override
public void callback(Output o) {
if(!(o instanceof AnswerSets))

return;
AnswerSets answerSets=(AnswerSets)o;
if(answerSets.getAnswersets().isEmpty())

(continues on next page)

34 Chapter 2. Examples

../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Handler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidHandler.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1platforms_1_1android_1_1AndroidService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1specializations_1_1dlv_1_1android_1_1DLVAndroidService.html
../_static/doxygen/narrative/classit_1_1unical_1_1mat_1_1embasp_1_1base_1_1InputProgram.html
../_static/doxygen/narrative/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html
../_static/doxygen/narrative/interfaceit_1_1unical_1_1mat_1_1embasp_1_1base_1_1Callback.html


EmbASP Documentation, Release 7.1.0

(continued from previous page)

return;
AnswerSet as = answerSets.getAnswersets().get(0);
try {

for(Object obj:as.getAtoms()) {
Cell cell = (Cell) obj;
sudokuMatrix[cell.getRow()][cell.getColumn()] = cell.getValue();

}
} catch (Exception e) {

// Handle Exception
}
displaySolution();

}
}

For further information, contact embasp@mat.unical.it or visit our website.

2.11 Desktop ASP exemples

• Shortest-path ASP Narrative

• Shortest-path ASP Theoretic

• Shortest-path ASP Programmatic

2.12 Desktop PDDL examples

• Blocks-world PDDL Narrative

• Blocks-world PDDL Theoretic

• Blocks-world PDDL Programmatic

2.13 Desktop Datalog examples

• Transitive Closure Datalog Narrative

• Transitive Closure Datalog Theoretic

• Transitive Closure Datalog Programmatic

2.11. Desktop ASP exemples 35

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/


EmbASP Documentation, Release 7.1.0

2.14 Android example

• Sudoku Android

36 Chapter 2. Examples



CHAPTER

THREE

CONTACTS

For further information, contact embasp@mat.unical.it or visit our website.

37

mailto:embasp@mat.unical.it
https://www.mat.unical.it/calimeri/projects/embasp/

	Documentation
	Narrative implementation
	Theoretic implementation
	Programmatic implementation
	Technical documentation
	Implementations
	Technical documentation

	Examples
	Shortest-path ASP Narrative
	Shortest-path ASP Theoretic
	Shortest-path ASP Programmatic
	Blocks-world PDDL Narrative
	Blocks-world PDDL Theoretic
	Blocks-world PDDL Programmatic
	Transitive Closure Datalog Narrative
	Transitive Closure Datalog Theoretic
	Transitive Closure Datalog Programmatic
	Sudoku Android
	Desktop ASP exemples
	Desktop PDDL examples
	Desktop Datalog examples
	Android example

	Contacts

